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Abstract

This paper investigates extensions of the method of endogenous gridpoints

(ENDGM) introduced by Carroll (2006) to higher dimensions with more than one

continuous endogenous state variable. We compare three different categories of algo-

rithms: (i) the conventional method with exogenous grids (EXOGM), (ii) the pure

method of endogenous gridpoints (ENDGM) and (iii) a hybrid method (HYBGM).

ENDGM comes along with Delaunay interpolation on irregular grids. Comparison

of methods is done by evaluating speed and accuracy. We find that HYBGM and

ENDGM both dominate EXOGM. In an infinite horizon model, ENDGM also al-

ways dominates HYBGM. In a finite horizon model, the choice between HYBGM

and ENDGM depends on the number of gridpoints in each dimension. With less

than 150 gridpoints in each dimension ENDGM is faster than HYBGM, and vice

versa. For a standard choice of 25 to 50 gridpoints in each dimension, ENDGM

is 1.4 to 1.7 times faster than HYBGM in the finite horizon version and 2.4 to 2.5

times faster in the infinite horizon version of the model.
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1 Introduction

Dynamic models of equilibrium in discrete time are workhorse models in Economics.

However, most of these models do not have an analytic closed form solution and equilibria

have to be approximated numerically. To this purpose, numerous procedures have been

developed in the literature, cf. Judd (1998), Miranda and Fackler (2004). If the problem

is differentiable, a popular approach is to use first-order methods, i.e., to iterate on

first-order conditions. An important contribution to this literature is Carroll (2006)

who introduces the method of endogenous gridpoints (ENDGM). In comparison to the

method of exogenous gridpoints (EXOGM), ENDGM greatly enhances computational

speed because part of the problem can be computed in closed form.

This paper investigates extensions of Carroll’s ENDGM to dynamic problems with

more than one continuous endogenous state variable. The key insight of ENDGM is that

the choice of the variable on which to define the grid is subject to the user in any dynamic

problem. A smart choice may then lead to closed form solutions of first-order conditions,

greatly enhancing speed of computations. We here introduce this general idea by first

considering the standard implementation of ENDGM in a one-dimensional problem, i.e.,

in a setup with one endogenous state variable. To this purpose, we introduce some

minimal notation, otherwise keeping the presentation as informal as possible. A more in

depth treatment is contained in Section 3.

We base the exposition on a consumption-savings problem, as in our application. In a

standard exogenous grid method (EXOGM), one solves in each time period (or iteration)

for each grid point on grid Ga of today’s state variable a (=assets) some non-linear

problem. The solution is given by the associated control variable c (=consumption) and

next period’s endogenous state variable assets, a′. Solution of this equation also requires

interpolation on some function(s) f on a′ because generally a′ /∈ Ga—e.g., f could be

the derivative of the value function or, depending on the nature of the problem, the

value function itself. Given a, c, a′, the additional control savings, s, can be computed.

To summarize, the mapping in EXOGM is a → (c, a′) → s where the mapping a →
(c, a′) requires, among other numerical operations, solving a non-linear equation and

interpolation. Also observe that, for some regular grid Ga—think, for simplicity, of equally

spaced grid points—the “endogenous” grid of a′ is generally irregular because the spacing

between grid points is a result of the entire mathematical operation.

The trick of ENDGM in such a setup is to revert the mapping, i.e., s → (a′, c) → a.

Instead of working on an exogenous grid for a, this is achieved by defining a grid on

savings, Gs. Depending on the nature of the problem it is then possible to solve for c

(and a′) analytically. This is the crucial step: The speed advantage of ENDGM relative

to EXOGM is achieved because the mapping s→ (a′, c) has a closed form solution. For

given contemporaneous variables s, c, and next period’s a′ one can then endogenously
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compute today’s endogenous state a. Again observe that, for some regular grid Gs, the

“endogenous” grid of a is generally irregular. In subsequent iterations, it is necessary to

interpolate on such an irregular grid. In one dimension this does not cause any specific

problems.

In this paper we highlight, however, that this irregularity of endogenous grids is the

source of a problem specific to ENDGM in higher dimensions. We emphasize that this

drawback is not related to the solution of the system of equations per se but results from

the endogenously computed states. As we show, the resulting state grid is generally not

rectangular, i.e., gridpoints are irregularly distributed in the space. In consequence, even

linear interpolation is much more costly than for conventional rectangular grids.

This is easiest to understand again by example. Consider two endogenous state vari-

ables a and h, where h is human capital, as in our application. Accordingly, (a′, h′)

are next period’s endogenous state variables. Control variables are consumption c, as

before, as well as investment in human capital, i. In addition, consider the endogenous

controls s (=savings, as before) and current period gross holdings of human capital, z,

where z is some function of the human capital stock, h, and the flow investment into

human capital, i. Corresponding to the one-dimensional problem the mapping in EX-

OGM is (a, h) → (c, i, a′, h′) → (s, z) where the mapping (a, h) → (c, i, a′, h′) requires

solution of a system of two non-linear equations. In ENDGM, the mapping is again re-

versed, i.e., (s, z) → (a′, h′, c, i) → (a, h). Depending on the nature of the problem, the

mapping (s, z)→ (a′, h′, c, i) has a closed form solution. As in the application in one di-

mension, the endogenous grid formed of a, h is irregular. In subsequent iterations one has

to interpolate on such an irregular grid. While such an interpolation is unproblematic in

one dimension, this irregularity severely complicates location of points for interpolation

in higher dimensions.

This exposition clarifies that there exists a fundamental trade-off between EXOGM

and ENDGM in higher dimensions. On the one hand, EXOGM requires the use of numer-

ical routines throughout whereas ENDGM computes solutions to first-order conditions

in closed form. On the other hand, interpolation in EXOGM is on regular grids and

therefore simple. Interpolation in ENDGM on irregular grids is much more complex.

We solve this complex interpolation by Delaunay triangulation (Delaunay 1934). De-

launay interpolation, originally coming from the field of geometry. It was only recently

introduced to the field by Brumm and Grill (2014). Broer, Kapicka, and Klein (2013) is

the only other (unpublished) paper in Economics we are aware of that applies the method.

Our contribution is to investigate its performance in combination with ENDGM.

In addition to EXOGM and ENDGM, we consider a third algorithm, a hybrid method

of exogenous gridpoints in one dimension and endogenous gridpoints in the other (HY-

BGM).1 Consequently, the endogenously computed grid is only irregular in one dimension.

1This is similar to the approach of Hintermaier and Koeniger (2010), also see below.
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This is a so-called rectilinear grid. Interpolation on a rectilinear grid is easy, just as in

the one-dimensional problem. The trade-off between HYBGM and ENDGM is therefore

between numerically more costly routines, e.g. Broyden’s method, in some dimensions

vis-à-vis analytical solutions in all dimensions but a more complex interpolation.

To analyze and to compare these methods we use a simple human capital model. As

we already discussed above, this model features two endogenous state variables, financial

assets and human capital. Evaluation of methods in this two dimensional setup is done

by comparing speed and accuracy of the different approaches.

Our main finding is that HYBGM and ENDGM both dominate EXOGM. They are

both substantially faster. In our infinite horizon application, ENDGM also dominates

HYBGM. In our finite horizon application, the choice between HYBGM and ENDGM

depends on the number of gridpoints in each dimension. For a relatively low number

of gridpoints, ENDGM is advantageous and vice versa for HYBGM. We also discuss

limitations of ENDGM and HYBGM which are both only applicable to specific problems

at hand.

To the best of our knowledge ENDGM in higher dimensions is not yet fully under-

stood. Our paper is an important contribution to fill this gap. Related work by Krueger

and Ludwig (2007) and Barillas and Fernandez-Villaverde (2007) extends ENDGM to

problems with two control variables but just one endogenous state variable. Hintermaier

and Koeniger (2010) use ENDGM in a durable goods model with two endogenous state

variables. The main difference of their approach to ours is that ENDGM is only ap-

plied in one dimension. Their method still requires solving a nonlinear equation and is

thereby very similar to our HYBGM.2 Our contribution is to implement ENDGM in two

dimensions.

Other related literature extends ENDGM to a class of dynamic programming problems

with both discrete and continuous choices in which the value function is non-smooth and

non-concave, cf. Fella (2014) and Iskhakov et al. (2014).

Our analysis proceeds as follows. Section 2 presents the simple human capital setting

on which we base the evaluation of methods. Section 3 introduces the main features of

the methods under evaluation, the method of exogenous gridpoints, the pure method of

endogenous gridpoints and the hybrid method. Section 4 presents results according to

speed and accuracy of all three methods. Section 5 concludes. Additional material is

contained in an appendix.

2One difference to our version of HYBGM is that we solve this non-linear equation with a univariate
solver whereas Hintermaier and Koeniger (2010) use interpolation techniques that are generally less
accurate. This is essentially analogous to applying a bisection method for one iteration only.
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2 General Framework

We develop a consumption and savings model which allows us to illustrate and to compare

three approaches to solve dynamic models with two endogenous states using first-order

methods. In addition to assets there is a second endogenous state variable, a human or

health capital stock (we will use both interpretations interchangeably). Human capital

can be accumulated over time and is produced with a nonlinear production function. For

expositional purposes we keep the model very simple. For example, despite the degenerate

risk of survival, we ignore any stochasticity to the effect that, e.g., wage processes are

fully deterministic. Of course, the underlying trade-off between solution methods will

also hold in more complex problems.

2.1 A Simple Human Capital Model

A risk averse agent with maximum time horizon T , T =∞ possible, derives utility from

consumption, ct, in each period, with standard additive separable life time utility

U =
T∑
t=1

βt−1s (ht)u (ct) ,

where β ∈ (0, 1) is the discount factor. The instantaneous utility function u (ct) as well as

the probability to survive to the next period s (ht) are assumed to be strictly increasing

and concave in their respective arguments. Income of the agent, yt, consists of labor

income which depends on the amount of accumulated human capital, ht, hence

yt = wht,

where w is the wage rate.

In each period the household faces the decision to consume, ct, to invest savings, st,

in a risk-free financial asset, at, which earns (gross) interest R and to invest an amount it

into human capital, ht. Human capital depreciates at constant rate δ and is produced

by the production function f (i). We assume that fi > 0, fii < 0 and that the Inada

conditions are satisfied, i.e., limit→0 fi = ∞ and limit→∞ fi = 0.3 The human capital

accumulation equation is accordingly given by

ht+1 = (1− δ) (ht + f (it)) , (1)

where h0 is given.

3These conditions are crucial because otherwise it could turn out to be optimal to invest in only
one asset. The other asset would be redundant and our problem would collapse to a problem in one
dimension.
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Financial markets are imperfect and households are not allowed to hold negative

financial assets. The dynamic budget constraint writes as

at+1 = R(at + wht − ct − it) ≥ 0,

where a0 is given.

Recursive Formulation of the Household Problem The recursive formulation of

the household problem is as follows:

Vt(at, ht) = max
ct,it,at+1,ht+1

{u(ct) + βs (ht+1)Vt+1(at+1, ht+1)}

subject to the constraints

at+1 = R (at + wht − ct − it)

ht+1 = (1− δ) (ht + f (it))

at+1 ≥ 0

ht+1 > 0. (2)

Assumptions on Functional Forms For our numerical approach we assume that

instantaneous utility has the CRRA property with coefficient of relative risk aversion

denoted by θ > 0:

u (ct) =
c1−θt − 1

1− θ
.

The human capital production function is

f (it) =
1

α
iαt

for curvature parameter α ∈ (0, 1). As to the functional form of the per-period survival

probability we follow Hall and Jones (2007) and assume that

s (ht) = 1− φ 1

1 + ht
,

for φ ∈ (0, 1].

We assume that the value function is strictly concave and unique maximizers are

continuous policy functions, cf. Stokey and Lucas (1989). It is well-known that strict

concavity of the value function may be violated in models with endogenous human capi-

tal formation (value functions may have concave and convex regions). Hence, first-order

conditions are generally necessary but not sufficient. In applications, one way to accom-

modate this is to use first-order methods at the calibration stage of the model (where
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speed is an issue). Upon convergence, one can then test for uniqueness by checking for

alternative solutions by use of global methods. To focus our analysis we do not further

address these aspects here.4

Solution The optimal solution is fully characterized by the following set of first-order

conditions and constraints:

c−θt = βR

(
1− φ 1

1 + ht+1

)
Vt+1a (at+1, ht+1) (3a)

γi
−(1−α)
t =

R

(1− δ)
Vt+1a (at+1, ht+1)

φ
(1+ht+1−φ)(1+ht+1)

Vt+1 (at+1, ht+1) + Vt+1h (at+1, ht+1)
(3b)

at+1 = R (at + wht − ct − it) (3c)

ht+1 = (1− δ) (ht + f (it)) (3d)

at+1 ≥ 0. (3e)

Vta and Vth are derivatives of the value function with respect to financial assets and human

capital, respectively. The first equation relates today’s consumption to consumption of

tomorrow, whereas the second equation relates costs and gains of investing in human

capital. Notice that constraint (2) can be dropped because of the lower Inada condition

of the human capital investment function f(i). Searching for the solution of this model

amounts to finding the four optimal policies for consumption, ct (·, ·), investment in human

capital, it (·, ·), next period’s financial assets, at+1 (·, ·), and next period’s human capital,

ht+1 (·, ·), as functions of the two endogenous state variables, financial assets, at, and

human capital, ht, that solve equation system (3).

The envelope conditions are:

Vta (at, ht) = uc = c−θt (4a)

Vth (at, ht) =

(
w +

1

fi

)
uc =

(
w +

1

γi
−(1−α)
t

)
c−θt . (4b)

Using (3a) together with (4a) gives the standard Euler equation of consumption.5

2.2 Calibration

We choose the same parametrization of the model for all solution methods described in

Section 3. The coefficient of relative risk aversion is set to θ = 0.5 to assure a positive

4We checked ex-post if value functions are globally concave which they are for the parameter space
considered here. A crucial parameter is α as it governs the curvature of the human capital production
function. If we were to choose a higher degree of curvature (lower α) than non-concavities may arise.
These results are available upon request.

5For derivation of (3) and the Envelope conditions see Appendix A.

7



value of life. We set the time preference rate to ρ = 0.04. In order to provide sufficient

incentives to save in the finite horizon setting without introducing risk we set an interest

rate of R−1 = 0.05. In the infinite horizon setting we set an interest rate of R−1 = 0.03

which is smaller than ρ in order to assure that financial assets are bounded. For the

depreciation rate of human capital we take δ = 0.05. The curvature parameter of the

human capital production function is α = 0.35. The wage rate w is set to 0.1. The

survival rate parameter is φ = 0.5.

3 Solution Methods

The main idea of all methods is to exploit the FOCs (3a) and (3b) to compute optimal

policies at discrete points that constitute a mesh in the state space. All three methods

use the recursive nature of the problem. Correspondingly, in the finite horizon version,

the model is solved backwards from the last to the first period (t = T, T − 1, . . . , 0). In

the infinite horizon implementation the iteration continues until convergence on policy

functions.

Differences between methods arise because of different solution procedures to the

multi-dimensional nonlinear equation system (3) and different interpolation methods,

respectively. To provide a preview: The first algorithm (EXOGM) applies a multi-

dimensional Quasi-Newton method. Standard interpolation methods are used. The sec-

ond algorithm (ENDGM) uses the method of endogenous gridpoints and thereby solves

the system of equations (3) analytically. It is accompanied by Delaunay interpolation.

The third algorithm (HYBGM) combines the former two, i.e., it applies the method

of endogenous gridpoints (and closed form solutions) in one dimension and uses a one-

dimensional Quasi-Newton method in the other dimension. As EXOGM, HYBGM comes

along with a standard interpolation procedure.

3.1 Multi-Dimensional Root-Finding with Regular Interpola-

tion (EXOGM)

The most direct approach to solve (3) is to insert the constraints into the FOCs and to

rely on a numerical multi-dimensional root-finding routine. Multi-dimensional solvers are

necessary because c and i show up on both sides of the respective non-linear equations

in (3). In our application we use a Quasi-Newton method, more specifically Broyden’s

method, cf. Press et al. (1996).

The implementation steps of EXOGM are as follows:

1. To initialize EXOGM predefine two grids, one for financial assets a, Ga =
{
a1, a2, ..., aK

}
and one for human capital h, Gh =

{
h1, h2, ..., hJ

}
and construct Ga,h = Ga ⊗ Gh.
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2. In period T , savings and investment in human capital are zero as both assets are

useless in period T + 16 and income is completely consumed for all
(
ak, hj

)
∈ Ga,h:

cT (·, ·) = akT + whjT

iT (·, ·) = 0.

Using the above in equations (4a) and (4b) the value function and its derivatives

with respect to a and h in T are

VT
(
akT , h

j
T

)
=

1

1− θ

(
ck,jT

)1−θ
VTa
(
akT , h

j
T

)
=
(
ck,jT

)−θ
VTh

(
akT , h

j
T

)
=

(
w +

1

γ

(
ik,jT

)1−α)(
ck,jT

)−θ
= w

(
ck,jT

)−θ
.

3. Iterate backwards on t = T − 1, . . . , 0. In each t for each
(
akt , h

j
t

)
∈ Ga,h:

(a) Given (suitably interpolated values of) Vt+1, Vt+1a and Vt+1h , solve the two-

dimensional equation system

(
ck,jt

)−θ
= βR

1− φ 1

1 + (1− δ)
(
hjt + γ

α

(
ik,jt

)α)


Vt+1a


ak,jt+1︷ ︸︸ ︷

R
(
akt + whjt − c

k,j
t − i

k,j
t

)
,

hk,jt+1︷ ︸︸ ︷
(1− δ)

(
hjt +

γ

α

(
ik,jt

)α)


γ
(
ik,jt

)−(1−α)
=

R

(1− δ)

Vt+1a

(
ak,jt+1, h

k,j
t+1

)
φ

(1+hk,jt+1−φ)(1+h
k,j
t+1)

Vt+1

(
ak,jt+1, h

k,j
t+1

)
+ Vt+1h

(
ak,jt+1, h

k,j
t+1

)
for ck,jt and ik,jt using Broyden’s method. If ck,jt + ik,jt > akt + whjt (binding

6This rationale does not imply that h must be zero in period T + 1 because human capital is—in
contrast to financial assets—inalienable.
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borrowing constraint) recompute ik,jt by solving

(
akt + whjt − i

k,j
t

)−θ
−

1(
(1− δ)

(
hjt + γ

α
(ik,jt )α

))2Vt+1a

(
0, (1− δ)

(
hjt +

γ

α
(ik,jt )α

))
β (1− δ) γ(ik,jt )−(1−α)

−

1− 1(
(1− δ)

(
hjt + γ

α
(ik,jt )α

))
Vt+1h

(
0, (1− δ)

(
hjt +

γ

α
(ik,jt )α

))
·

β (1− δ) γ(ik,jt )−(1−α) = 0

for ik,jt . Next, re-compute ck,jt = akt + whjt − i
k,j
t .

(b) Save/Update both the value function and its derivatives

Vt
(
akt , h

j
t

)
=

1

1− θ

(
ck,jt

)1−θ
+ β

(
1− φ 1

1 + hk,jt+1

)
Vt+1(a

k,j
t+1, h

k,j
t+1)

Vt+1a

(
akt , h

j
t

)
=
(
ck,jt

)−θ
Vt+1h

(
akt , h

j
t

)
=

(
w +

1

γ

(
ik,jt

)1−α)(
ck,jt

)−θ
.

Since EXOGM requires to apply the solver for each point in Ga,h, this procedure entails

solving the multidimensional equation system [K · J ] times in each t = T − 1, . . . , 0.

Depending on the stopping criterion in the numerical routine this could be either quite

costly in terms of computing time or the computed solutions suffer under low accuracy.

An additional shortcoming of EXOGM compared to ENDGM and HYBGM is that the

region where the borrowing constraint is binding is not determined.7 In consequence,

policy functions are imprecise at the kink. This may also cause convergence problems.

Furthermore, numerical methods often require fine tuning so that stability of numerical

routines is ascertained. We initially encountered several such instability problems which

we managed to fix by setting options of the solver accordingly.8

Interpolation on a Rectilinear Grid Step 3a requires evaluation of both the value

function Vt+1 and its derivatives, Vt+1a and Vt+1h . As, in general, (ak,jt+1, h
k,j
t+1) /∈ Ga,h

we have to interpolate these functions. We apply bilinear interpolation. Precisely, we

determine interpolation nodes by the concept “grid square”, cf. Press et al. (1996). In

7In principle, this could be accommodated by an additional rootfinder to detect the kink—i.e.,
the a, h-combination at which the borrowing constraint just becomes unbinding—and to add in additional
grid points there. We do not extend the method along this dimension. A naive extension along these lines
would further slow down EXOGM. However, see Brumm and Grill (2014) for a sophisticated application.

8An alternative would be to avoid multivariate solvers and to instead use fixed point iterations with
nested univariate solvers. However, this would further slow down EXOGM.
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order to apply this procedure it is necessary to have a rectilinear grid, i.e., the state space

has to be tessellated by rectangles.9 In this case all gridpoints in row G•,j have the same

value of hj, and all gridpoints in column Gk,• have the same value of ak. The problem of

locating a point in a multi-dimensional grid is split up into several problems of locating

the point in one dimension. Within each dimension and a total number of N points in the

point set closest neighbors in the grid are identified in about log2N trials using bisection

methods. Figure 1 shows the location of interpolation nodes [A;B;C;D] for point X in

a two-dimensional rectilinear grid.

Figure 1: Rectilinear Grid

q−1

a

q

p−1p

h

A B

C D

X

1
1

1, +
+

+• = j
t

j hG

1+th

j
t

j hG 1
,

+
• =

2, +• jG

1+ta•
+

• = ,
1

, k
t

k aG•− ,1kG •+
+

•+ = ,1
1

,1 k
t

k aG

Notes: Interpolation on rectilinear grids. In any row locate the two columns (Gk,• and Gk+1,•) that
form the most narrow bracket of at+1. In any column locate the two rows (G•,j and G•,j+1) that form
the most narrow bracket of ht+1. Interpolation nodes: (k, j); (k + 1, j); (k, j + 1); (k + 1, j + 1).

In EXOGM, Ga⊗Gh is predetermined as a rectilinear grid (in every iteration). After

locating the nodes, bi-linear interpolation of any function of F—in our case the value

function in t as well as its first derivatives with respect to a and h—at point X requires

computing F (X) = ϕAF (A) + ϕBF (B) + ϕCF (C) + ϕDF (D) with the four basis func-

tions ϕ where ϕA = p · q, ϕB = (1− p) · q, ϕC = p · (1− q) and ϕD = (1− p) · (1− q)
with p = aX−aA

aB−aA
and q = hX−hA

hC−hA
, cf. Judd (1998).

3.2 Analytical Solution with Delaunay Interpolation

(ENDGM)

The above setting has a straightforward economic interpretation. Given an exogenous

state today (at, ht) compute the endogenous state variables (at+1, ht+1). The main idea

of ENDGM is to redefine exogenous and endogenous objects in the numerical solution:

the grid of contemporaneous control variables is taken as exogenous whereas the grid of

today’s state variables is determined endogenously.

9Notice that these rectangles do not necessarily have to be congruent to each other.
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In our two-dimension setup, implementation of the method requires definition of two

endogenous control variables on which to base the exogenous grids. To this purpose define

by

st ≡ at + wht − ct − it =
at+1

R
(5a)

zt ≡ ht + f (it) =
ht+1

1− δ
(5b)

return adjusted stock of physical and human capital, respectively. Our implementation

of the method defines grids on (st, zt) and maps from (st, zt) to (at+1, ht+1) by at+1 = Rst

and ht+1 = (1− δ) zt.10 Next, the system of FOCs can be solved analytically to determine

the corresponding set of contemporaneous controls, (ct, it). Finally, we use the budget

constraint and the law of motion for human capital to get the corresponding endogenous

state variables, (at, ht). Precisely, the implementation steps are as follows:

1. To initialize ENDGM predefine two grids, one for gross savings s, Gs ≡
{
sn, sn+1, ..., sK

}
and one for gross investment in human capital z, Gz ≡

{
z1, z2, ..., zJ

}
as defined

in (5) and form Gs,z = Gs ⊗ Gz.

2. Define Ga,h = Ga ⊗ Gh for T . Compared to Gs, the grid Ga includes n additional

gridpoints. These gridpoints represent the region in which the borrowing constraint

is binding (see step 3e). In period T , as in EXOGM,

cT (·, ·) = ak,jT + whk,jT

iT (·, ·) = 0

for all
(
ak,j, hk,j

)
∈ Ga,h and

VT

(
ak,jT , hk,jT

)
=

1

1− θ

(
ck,jT

)1−θ
VTa

(
ak,jT , hk,jT

)
=
(
ck,jT

)−θ
VTh

(
ak,jT , hk,jT

)
=

(
w +

1

γ

(
ik,jT

)1−α)(
ck,jT

)−θ
= w

(
ck,jT

)−θ
.

3. Iterate backwards from t = T − 1, ..., 0. In each t, for each
(
sk, zj

)
∈ Gs,z:

10In deterministic model such as ours, this mapping is of course deterministic. We could therefore
directly work on a grid of (at+1, ht+1). However, this would generally not be possible in a stochastic
model because the realizations of (at+1, ht+1) depend on the realizations of shocks in period t + 1. For
sake of generality, we therefore define the grid on (st, zt).
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(a) Compute akt+1 and hjt+1:

akt+1 = Rsk,

hjt+1 = (1− δ) zj.

(b) Given Vt+1, Vt+1a and Vt+1h interpolate the value function and its derivatives

at
(
akt+1, h

j
t+1

)
to get (interpolated values of) Vt+1

(
akt+1, h

j
t+1

)
,

Vt+1a

(
akt+1, h

j
t+1

)
and Vt+1h

(
akt+1, h

j
t+1

)
using Delaunay interpolation (see be-

low).

(c) Compute ck,jt and ik,jt :

ck,jt =

βR(1− φ 1

1 + (1− δ) zj

)
Vt+1a


akt+1︷︸︸︷
Rsk ,

hjt+1︷ ︸︸ ︷
(1− δ) zj



− 1
θ

,

ik,jt =
1

γ

 R

(1− δ)
Vt+1a

(
akt+1, h

j
t+1

)
φ

(1+hjt+1−φ)(1+h
j
t+1)

Vt+1

(
akt+1, h

j
t+1

)
+ Vt+1h

(
akt+1, h

j
t+1

)
− 1

1−α

.

(d) Compute ak,jt and hk,jt :

hk,jt = zj − γ

α

(
ik,jt

)α
ak,jt = sk − whk,jt + ck,jt + ik,jt .

(e) If an+1,j
t > 0, define for each j an auxiliary grid Gaux ≡ {a1, a2, ..., an} between

0 and an+1,j
t .11 In this region the borrowing constraint is binding. Compute

ik,jt by solving

(
akt + w

(
hjt+1

1− δ
− γ

α
(ik,jt )α

)
− ik,jt

)−θ
− 1(

hjt+1

)2Vt+1a

(
0, hjt+1

)
β (1− δ) γ(ik,jt )−(1−α)

−

(
1− 1

hjt+1

)
Vt+1h

(
0, hjt+1

)
β (1− δ) γ(ik,jt )−(1−α) = 0

using a non-linear solver. Then compute ck,jt = akt +w

(
hjt+1

1−δ −
γ
α

(ik,jt )α
)
− ik,jt .

11If an+1,j
t ≤ 0, the borrowing constraint is not binding and we add in some artificial numbers for

the solution here. Observe that the method can be further improved by working with t- (or iteration-)
dependent grids, an approach we do not adopt here.
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(f) Save/Update both the value function and its derivatives

Vt

(
ak,jt , hk,jt

)
=

1

1− θ

(
ck,jt

)1−θ
+ β

(
1− φ 1

1 + hjt+1

)
Vt+1

(
akt+1, h

j
t+1

)
Vta

(
ak,jt , hk,jt

)
=
(
ck,jt

)−θ
Vth

(
ak,jt , hk,jt

)
=

(
w +

1

γ

(
ik,jT

)1−α)(
ck,jt

)−θ
.

The clear advantage of ENDGM compared to EXOGM becomes obvious in step 3c.

By conditioning on the grid of st and zt the system of FOCs can be solved for ct and it

analytically and hence no numerical root-finder is needed. Furthermore, ENDGM pro-

vides, by construction, an exact determination of the range of the borrowing constraint

and produces higher accuracy of the solution than EXOGM in this region. However,

in contrast to the standard one-dimensional problem considered by Carroll (2006), the

policy function itself does not have a closed form solution in this range, see step 3e.12

Remark 1 In contrast to EXOGM, ENDGM is not a general method. Suppose we were

to adopt a general Ben-Porath human capital function, cf. Ben-Porath (1967), in which

the level of human capital directly affects the productivity of human capital investments,

i.e., we replace f(i) in equation (1) with f(h, i). ENDGM is no longer applicable in such

a formulation. This exemplifies that an application of ENDGM often requires specific

modeling assumptions.

Delaunay Interpolation In EXOGM the grid is rectilinear by construction whereas in

ENDGM the endogenously computed grid Ga,h is not. This constitutes the main drawback

of ENDGM because location of interpolation nodes is not obvious. As illustrated in

Figure 2, separating the multi-dimensional problem into several one-dimensional problems

is not possible. In each row not just the value of a changes but also the value of h so

that the concept of bi-linear interpolation in a square grid is not applicable. ENDGM

hence generates a situation where neighboring points in the state space do not need to

be neighboring elements in the grid matrix.

The most common approach adopted in other scientific fields such as geometry or

geography to locate neighboring points in an irregular grid is the concept of Delaunay

triangulation and its related geometric construct, the Voronoi diagram. We explain the

geometric construction of the Voronoi diagram by use of Figure 3. The Voronoi diagram

(polygon)—shown in Panel (a) of Figure 3—is the region of the state space consisting

of all points closer to gridpoint P1 than to any other gridpoint. The Voronoi diagram

12In a standard consumption-savings model with only one endogenous continuous state variable the
policy function is computed by linearly interpolating between the policy at zero saving and the origin,
cf. Carroll (2006).
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Figure 2: Irregular Grid
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Notes: Interpolation on irregular grids. Multidimensional interpolation cannot be separated into several
one-dimensional interpolations as the values of a and h change in each column or row.

is obtained from the perpendicular bisectors of the lines connecting neighboring points.

Voronoi diagrams for all points form a tessellation of the space, cf. Panel (a). Edges

of the Voronoi diagram are all the points in the plane that are equidistant to the two

nearest gridpoints, cf. Panel (b). The Voronoi vertices are the points equidistant to

three gridpoints, i.e., they are the center of circumcircles including the three neighboring

gridpoints, cf. Panel (c). Connecting these gridpoints constitutes the unique triangulation

known as the Delaunay triangulation as displayed in Panel (d), cf. Baker (1999). The

vertices of a triangle are the nearest neighbors of all points contained in that triangle.

These concepts can also be generalized to more than two dimensions.

The computational implementation of a Delaunay triangulation is done by the so-

called randomized incremental algorithm, illustrated in Figure 4. It is incremental in the

sense that it adds points to the triangulation one at a time to maintain a Delaunay trian-

gulation at each stage. It is randomized in that points are added in a random order which

guarantees O(N log N) expected time for the algorithm where N is the total number of

points in the point set, cf. Press et al. (2007). To construct the Delaunay triangulation

for a given point set we initially have to add three “fictitious” points [Θ1,Θ2,Θ3], forming

a large starting triangle which encloses all “real” points, cf. Panel (a) of Figure 4. This

is necessary in order to ensure that added points lie within an existing triangle. These

“fictitious” points are deleted once the triangulation is complete. In each following step

of Delaunay triangulation a point from the point set is added to the existing triangula-

tion and connected to the vertices of the enclosing triangle. We illustrate this step in

Panel (b) of the figure. Consider the existing triangle P1, P2, P3 and a new point from

the point set, P5, which is not yet connected to other points. Connecting P5 to P1, P2

and P3, respectively, gives rise to three new triangles. Next, it is checked whether the
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Figure 3: The Voronoi Diagram

Panel (a) Panel (b)

1P

a

h

1P

a

h

3P

2P

Panel (c) Panel (d)

1P

a

h

3P

M

2P

a

h

2P

1P

3P

Notes: Panel (a): Generating the Voronoi polygon: Edges are perpendicular bisectors of lines connecting
neighboring points. Panel (b): Several Voronoi tiles in mesh grid. Panel (c): Circle with center at vertex
includes three closest points. Panel (d): Delaunay Triangulation: Vertices are nearest neighbors of all
points within triangle.
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newly created triangles are “legal”, i.e., whether the circumcircle of any triangle does not

contain any other point of the point set.13 In our example, we first visit triangle P2, P3, P5

in Panel (c). As shown in the figure, the circumcircle contains point P4. Hence, trian-

gle P2, P3, P5 is not legal. Therefore, flip the edge opposite of P5 connecting P5 with P4.

This operation creates two new triangles, P3, P4, P5 and P2, P4, P5, cf. Panel (d) of the

figure, which must be checked for legality. In our example, triangle P3, P4, P5 is legal

because the circumcircle does not contain other existing points from the point set. The

process is recursive and never wanders away from any point P (point P5 in our example).

The only edges that can be made illegal by inserting a point P are edges opposite P (in

triangles with P as a vertex).14

At interpolation, to locate a (query) point X in a given planar triangular mesh we

adopt a procedure referred to as visibility walk, illustrated in Figure 5. The search starts

from an initial guess of a triangle, ∆1. Then, it is tested if the line supporting the first

edge e separates ∆1 from the query point X which reduces to a single operation test.

If this is the case, the next triangle being visited is the neighbor of ∆1 through e, ∆2.

Otherwise the second edge is tested in the same way. In case the test for the second edge

also fails then the third edge is tested. The failure of this third test means that the goal

has been reached. In Figure 5, this would be the case at triangle ∆X which contains

X.15 Devillers et al. (2001) find that performance of the visibility walk is better than

other possible algorithms. The location step for the visibility walk takes only O log (N)

operations, cf. Press et al. (2007). The starting triangle may be arbitrary. However, an

informed choice may radically shorten the length of the walk. We accommodate this by

initializing the search with our solutions to gridpoints visited previously.

After locating the triangle we compute the normalized barycentric coordinates (weights)

of the query point X with respect to the vertices (A,B,C) of the triangle ∆X ,

ϕA =
(aX − aC) (hB − hC) + (aC − aB) (hX − hC)

(aA − aC) (hB − hC) + (aC − aB) (hA − hC)

ϕB =
(aX − aC) (hC − hA) + (aA − aC) (hX − hC)

(aA − aC) (hB − hC) + (aC − aB) (hA − hC)

ϕC = 1− ϕA − ϕB.

Finally, the interpolated value of any function F at point X is given as the weighted

13This principle is derived from the definition that a triangulation fulfills the Delaunay property if
and only if the circumcircle of any triangle does not contain a point in its interior, cf. de Berg et al.
(2008).

14This procedure is described in Press et al. (2007). We use the numerical package geompack3 based
on Joe (1991) for both the Delaunay triangulation and the “visibility walk”, described next.

15In non-Delaunay triangulations, the visibility walk may fall into a cycle, whereas in Delaunay
triangulations the visibility walk always terminates, cf. Devillers et al. (2001).
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Figure 4: Incremental Algorithm
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Notes: Panel (a): Three ”fictional” points added to constitute the first triangle which includes all ”real”
points of the point set. Panel (b): Point added to existing Delaunay Triangulation and connected to
vertices of enclosing triangle. Panel (c): Circumcircle contains a point. and is therefore illegal triangle.
Panel (d): Circumcircle does not contain any point and is therefore legal.
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Figure 5: Visibility Walk
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Notes: Visibility walk in Delaunay triangulation - Locate triangle ∆X containing X with initial guess
∆1. If the line supporting e separates ∆ from X, which reduces to a single orientation test, then the
next visited triangle is the neighbor of ∆ through e.

average of the respective function values at the vertices,

F (X) = ϕAF (A) + ϕBF (B) + ϕCF (C).

In our code we also incorporate the option of a multi-linear interpolation used by Broer

et al. (2013). This alternative interpolation method is very useful in applications in which

existing triangles are visited frequently. In our specific applications, this is, however, not

the case so that the method does not have an advantage over the simple interpolation

method we use. We therefore do not apply it when generating our results below.16

16The basic idea of multilinear interpolation is as follows: We can write[
aX
hX

]
=

[
aA
hA

]
+ s

[
aB − aA
hB − hA

]
+ t

[
aC − aB
hC − hB

]
=

[
aA
hA

]
+A

[
s
t

]
, for A =

[
aB − aA aC − aB
hB − hA hC − hB

]
and some scalars s and t. Given (aX , hX), the solution for (s, t) is accordingly given by[

s
t

]
= A−1

[
aX − aA
hX − hA

]
= A−1

[
aX
hX

]
− b, where b = A−1

[
aA
hA

]
. (6)

The value of function F (X) then follows as

F (X) = F (A) + s (F (B)− F (A)) + t (F (C)− F (B)) . (7)

Matrix A−1 and vector b must only be computed once when triangle ∆X is visited for the first time and
can accordingly be stored. In subsequent visits of ∆X one can compute, for any point X̃ ∈ ∆X , the
scalars (s̃, t̃) directly from equation (6) and the interpolated value from equation (7).
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3.3 One-Dimensional Root-Finding with Hybrid Interpolation

(HYBGM)

We next consider a hybrid method (HYBGM) which combines EXOGM and ENDGM.

Specifically, we use ENDGM in one dimension of the problem only. Hence, we define one

of the two state variables on an “endogenous” grid, whereas the other is on an “exogenous”

grid. The algorithm proceeds in three steps. In the first step, conditioning on control

variable st and period t endogenous state ht, we compute next period’s endogenous state

variable at+1 and exploit one of the two FOCs to derive the value of one period t control

variable—in this setup investment in human capital, it. In this step a one-dimensional

solver is required. To preserve comparability with the previously described methods we

choose Broyden’s method.17 In the second step, control it is used to get the value of the

second period t+1 endogenous state variable, ht+1 from the budget constraint. Exploiting

the second FOC we can then compute the second control variable, ct. In the third step,

we compute the corresponding endogenous state variable at from the budget constraint.

The implementation steps are as follows:

1. To initialize HYBGM predefine two grids, one for gross savings s, Gs ≡
{
s1, s2, ..., sK

}
and one for human capital h, Gh ≡

{
h1, h2, ..., hJ

}
and form Gs,h = Gs ⊗ Gh

2. In period T , define an initial guess for Ga,h = Ga ⊗ Gh. Ga includes n additional

gridpoints compared to Gs. These gridpoints represent the region in which the

borrowing constraint is binding (see step 3d). Compute

cT (·, ·) = ak,jT + whjT

iT (·, ·) = 0

for all
(
ak,jT , hjT

)
∈ Ga,h and

VT

(
ak,jT , hjT

)
=

1

1− θ

(
ck,jT

)1−θ
VTa

(
ak,jT , hjT

)
=
(
ck,jT

)−θ
VTh

(
ak,jT , hjT

)
=

(
w +

1

γ

(
ik,jT

)1−α)(
ck,jT

)−θ
.

3. Iterate backwards on t = T − 1, ..., 0. In each t, for each
(
sk, hj

)
∈ Gs,h:

(a) Compute akt+1 = Rsk.

17Using Brent’s method instead turns out to slow down speed of HYBGM.
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(b) Given (suitably interpolated values of) Vt+1, Vt+1a and Vt+1a , solve the one-

dimensional equation system for ik,jt

ik,jt =
1

γ


R

(1− δ)

Vt+1a


akt+1︷︸︸︷
Rsk ,

hk,jt+1︷ ︸︸ ︷
(1− δ)

(
hjt +

γ

α

(
ik,jt

)α)


φ

(1+hk,jt+1−φ)(1+h
k,j
t+1)

Vt+1

(
akt+1, h

k,j
t+1

)
+ Vt+1h

(
akt+1, h

k,j
t+1

)



− 1
1−α

using Broyden’s method. This includes several computations of

hk,jt+1 = (1− δ)
(
hjt + γ

α

(
ik,jt

)α)
and hybrid interpolations —described below—

on Vt+1, Vt+1aand Vt+1h .

(c) Compute ck,jt as

ck,jt =

(
βR

(
1− φ 1

1 + hk,jt+1

)
Vt+1a

(
Rsk, hk,jt+1

))− 1
θ

.

(d) If an+1,j
t > 0, define for each j an auxiliary grid Gaux ≡ {a1, a2, ..., an} between

0 and an+1,j
t . In this region the borrowing constraint is binding. Compute ik,jt

by solving

(
akt + whjt − i

k,j
t

)−θ
−

1(
(1− δ)

(
hjt + γ

α
(ik,jt )α

))2Vt+1a

(
0, (1− δ)

(
hjt +

γ

α
(ik,jt )α

))
β (1− δ) γ(ik,jt )−(1−α)

−

1− 1

(1− δ)
(
hjt + γ

α
(ik,jt )α

)
Vt+1h

(
0, (1− δ)

(
hjt +

γ

α
(ik,jt )α

))
·

β (1− δ) γ(ik,jt )−(1−α) = 0

for ik,jt . Next, compute ck,jt = akt + whjt − i
k,j
t .

(e) Compute ak,jt from the budget constraint, hence

ak,jt = sk − whjt + ck,jt + ik,jt .
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(f) Save/Update both the value function and its derivatives

Vt

(
ak,jt , hjt

)
=

1

1− θ

(
ck,jt

)1−θ
+ β

(
1− φ 1

1 + hk,jt+1

)
Vt+1(a

k
t+1, h

k,j
t+1)

Vta

(
ak,jt , hjt

)
=
(
ck,jt

)−θ
Vth

(
ak,jt , hjt

)
=

(
w +

1

γ

(
ik,jT

)1−α)(
ck,jt

)−θ
.

As EXOGM, HYBGM requires to run a numerical solver [K · J ] times in each t =

T − 1, . . . , 0. However, computational burden is alleviated by reducing complexity of the

equation system. Furthermore, as in ENDGM, it is possible to exactly determine the

range of the borrowing constraint. In contrast to ENDGM in two dimensions, there is no

need for a complex interpolation method.

Remark 2 As ENDGM, HYBGM is not a general method. Suppose that consumption

has an additional effect on human (or health capital). Consider for example an application

where health capital is negatively affected by the consumption of junk food. Correspond-

ingly rewrite (1) to ht+1 = (1− δ) (ht + f(it)− g (ct)) to the effect that both controls ct

and it appear on both sides of the equation system even after applying the reformulation

of endogenous states. This renders HYBGM inapplicable.

Hybrid Interpolation Hybrid interpolation, illustrated in Figure 6, is defined on a

curvilinear grid where one dimension is being held constant. To locate any query point X

hybrid interpolation proceeds in three steps. First, in the dimension of the exogenous grid

(current state ht) find the most narrow bracket of ht+1 and compute the weights according

to the relative distance to these gridpoints. Second, in both rows, find those gridpoints

that form the most narrow bracket of at+1 and compute the according weights. Third,

interpolation of any function of F at point X requires computing F (X) = ϕAF (A) +

ϕBF (B) + ϕCF (C) + ϕDF (D) with the four basis functions ϕ where ϕA = p · q, ϕB =

(1− p) · q, ϕC = r · (1− q) and ϕD = (1− r) · (1− q) with p = aX−aA
aB−aA

, r = aX−aC
aD−aC

and q = hX−hC
hC−hA

. Thus, HYBGM reduces complexity of the problem without involving

advanced interpolation procedures.

4 Results

We present results separately for the finite and infinite horizon versions of our model.

Throughout, we use triple exponential grids for a, h, s, z, respectively. We set the range

of grid Gs to [0, 500] and of Gz to [1, 500]. The according grids Ga and Gh are adjusted to

22



Figure 6: Hybrid Interpolation
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Notes: Hybrid Interpolation. First, in the exogenous dimension, locate the two rows G•,j and G•,j+1

that form the most narrow bracket of ht+1. Second, locate in these two rows the gridpoints that form
the most narrow bracket of at+1. Interpolation nodes: (k, j); (k, j + 1); (l, j + 1); (l + 1, j + 1).

cover the corresponding range of the state space.18

4.1 Error Evaluation

In both the finite and the infinite horizon version of the model, evaluation of accuracy of

the solution is done by applying normalized Euler equation errors, cf. Judd (1992), as has

become standard in the literature, cf., e.g., Santos (2000) and Barillas and Fernandez-

Villaverde (2007). In our approach we get the Euler equation errors e1 and e2 by using

the respective envelope conditions and combine them with the FOCs to get:

e1,t = 1−

(
Rs(ht+1)β (ct+1)

−θ
)− 1

θ

ct
, (8a)

e2,t = 1−

(
R

(1−δ)

(
sh(ht+1)Vt+1

s(ht+1)(ct+1)
−θ + w + 1

γ
i1−αt+1

)−1)− 1
α

it
. (8b)

These errors are dimension free quantities. Equation (8a) expresses the optimization error

as a fraction of current consumption. An error of e1,t = 10−3, for instance, means that the

household makes a $1 mistake for each $1000 spent, cf. Aruoba, Fernandez-Villaverde,

and Rubio-Ramirez (2006). These errors are expressed in units of base 10-logarithm

which means that −4 is an error of 0.0001.

18Also observe, by construction, there is only one occasionally binding constraint in our model. This
would be different in a situation with durable consumption goods as in Hintermaier and Koeniger (2010).
As ENDGM is a very efficient way in dealing with occasionally binding constraints such an alternative
model may further improve the relative performance of ENDGM.
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4.2 Finite Horizon

We iterate over T = 100 time periods. Computational speed of the respective algo-

rithms is measured in seconds. To compare all three methods in terms of accuracy we

simulate 100 life-cycles profiles and evaluate Euler equation errors accordingly. Initial

assets a0 are set in the range [10, 100] whereas initial human capital h0 is drawn from

the range [50, 100]. For each simulation and each age we compute e1,t and e2,t from equa-

tion (8).19 We next compute average and maximum errors across all simulations and

ages. These are provided in Table 1. Both are of similar magnitudes across algorithms.

To evaluate the relative performance of the different algorithms, we can therefore further

concentrate on comparison of speed only.

Table 1 shows computing times for EXOGM, ENDGM and HYBGM for different

numbers of gridpoints. We report absolute computing time as well as relative speed,

i.e., relative to the ENDGM method. As our model is (on purpose) very stylized, abso-

lute computing times are low across all models. However, relative speed is the relevant

measuring rod because absolute speed scales up in the complexity of the model’s specifi-

cation, e.g., in fully stochastic models, applications in general equilibrium or estimation

of models with structural methods. With regard to this relative comparison, observe from

Panel (a) of Figure 7 that EXOGM is outperformed by both ENDGM and HYBGM.

Panel (b) of Figure 7 shows that ENDGM has a relative advantage in comparison

to HYBGM in solving the model with a relatively small number of gridpoints. At a

grid size of 252, ENDGM is about 1.7 times faster than HYBGM. For solving the model

with a higher number of gridpoints, however, HYBGM is advantageous. At a grid size

of 3002, HYBGM is about 1.3 times faster than ENDGM. In our setting the break-even

point between both algorithms is at a number of 1802 gridpoints and a computing time

of 8.8s. As can be seen from Table 1, for a standard choice of 25 to 50 gridpoints in

each dimension, ENDGM is 0.624
0.437

≈ 1.4 to 0.156
0.094

≈ 1.7 times faster than HYBGM and
0.982
0.437
≈ 2.3 to 0.234

0.094
≈ 2.5 times faster than EXOGM.

4.3 Infinite horizon

To compare the algorithms in the infinite horizon setting, we make the same initial

guesses for derivatives V0a and V0h and iterate until convergence on policy functions

subject to convergence criterion ε = 10−6 in terms of the maximum absolute distance

of policy functions. In the infinite horizon setting, speed of ENDGM can be increased

if the Delaunay Triangulation is not constructed every iteration. Instead, we hold the

triangulation pattern fixed after a certain number of iterations—50 in our case. We call

this modification of the algorithm “Approximate Delaunay”. Figure 8 illustrates this.

Panel (a) of the figure shows how endogenous grid-points move in the (a, h) space from

19Euler equation errors are not computed if the borrowing constraint is binding.
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Table 1: Finite Horizon Model: Performance Results

Speed Euler Equation Error
Number of
Gridpoints for
(a, h)

Seconds Relative to
ENDGM

Maximum for
c ; i

Average for
c ; i

ENDGM
(25, 25) 0.094 - −2.56; −2.17 −3.70; −2.94
(50, 50) 0.437 - −2.92; −2.60 −4.36; −3.53

(100, 100) 2.090 - −3.37; −3.07 −4.91; −4.05
(200, 200) 11.278 - −3.84; −3.47 −5.44; −4.51

HYBGM
(25, 25) 0.156 1.7 −2.62; −2.25 −3.88; −2.90
(50, 50) 0.624 1.4 −2.99; −2.71 −4.43; −3.52

(100, 100) 2.496 1.2 −3.43; −3.10 −5.00; −3.98
(200, 200) 10.218 0.9 −4.16; −3.52 −5.54; −4.45

EXOGM
(25, 25) 0.234 2.5 −2.60; −2.24 −3.89; −2.90
(50, 50) 0.982 2.3 −2.95; −2.71 −4.42; −3.52

(100, 100) 3.868 1.9 −3.42; −3.10 −4.99; −3.98
(200, 200) 15.663 1.4 −4.18; −3.52 −5.54; −4.45

Notes: Computing time for T = 100 and resulting maximum and average Euler equation errors.
Computing time is reported in seconds and absolute errors in units of base-10 logarithms.

Figure 7: Finite Horizon Model: Speed
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Notes: Panel (a): Computing time as a function of gridpoints in seconds (with equally many gridpoints
in both dimensions). Solid line: computing time of EXOGM; dotted line: computing time of HYBGM;
dashed-dotted line: computing time of ENDGM. Panel (b): Ratio of computing time of ENDGM to
HYBGM as a function of gridpoints (with equally many gridpoints in both dimensions).
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one iteration to the next. Panel (b) shows the new triangulation, holding constant the

respective triangles from Panel (a). However, this triangulation is not Delaunay because

edge P1-P2 becomes illegal.

In “Approximate Delaunay” it is necessary to ensure that the endogenously computed

gridpoints form a convex hull. This might be violated without further adjustments. For

example, in our illustration in panel (b) of Figure 8 violation of convexity would occur if

point P3 is shifted even further to the right. In such cases we redo the entire Delaunay

tessellation.

Figure 8: Infinite Horizon Model: Approximate Delaunay

Panel (a) Panel (b)
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Notes: Panel (a): In each iteration of ENDGM the gridpoints are relocated. Distance and direction of
this movement is different for each gridpoint. Panel (b): The resulting grid might not be Delaunay -
Edge between P1 and P2 becomes illegal and must be flipped to P3 and P4. Approximate Delaunay keeps
the old triangulation in order to save computing time, accepting a less accurate interpolation.

To compute Euler equation errors we simulate the model for various different initial

conditions of financial assets and health capital over 50 periods. We set initial assets a0 in

the range of [100, 400] and the health capital stock in the range of [40, 80]. We compute e1,t

and e2,t from equation (8) for the first 50 periods. Average and maximum errors are

provided in Table 2.

As in the finite horizon setting, average Euler equation errors are of similar magni-

tudes across algorithms—which we also achieve by appropriate settings of the respective

numerical routines—so that we can again further concentrate on a comparison of speed

only.20

We find that ENDGM is the fastest method for all numbers of gridpoints considered.

In this respect our findings differ from the finite horizon version of the model in which the

20The maximum Euler equation errors are considerably higher for EXOGM. They occur in the simu-
lations just before the depletion of all financial assets. This is due to the fact that we do not determine
explicitly the region where the borrowing constraint becomes binding and accordingly have no gridpoints
located there.
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speed advantage of ENDGM relative to HYBGM was found to depend on the number

of gridpoints. The reason for this difference is the use of the variant “Approximate

Delaunay” in the infinite horizon model, as described above. As in the finite horizon

model, the comparative advantage of ENDGM decreases in the number of gridpoints.

Both, ENDGM and HYBGM, again clearly dominate EXOGM. For a standard choice

of 25 to 50 gridpoints in each dimension, ENDGM is 1.153
0.624
≈ 2.4 to 0.390

0.156
≈ 2.5 times faster

than HYBGM and 2.527
0.624
≈ 4.0 to 0.640

0.156
≈ 4.1 times faster than EXOGM, cf. Table 2.

Table 2: Infinite Horizon Model: Performance Results

Speed Euler Equation Error
Number of
Gridpoints for
(a, h)

Seconds Relative to
ENDGM

Maximum for
c ; i

Average for
c ; i

ENDGM
(25, 25) 0.156 - −2.09; −2.10 −2.87; −2.87
(50, 50) 0.624 - −2.37; −2.40 −3.61; −3.52

(100, 100) 2.792 - −2.84; −2.91 −4.17; −4.15
(200, 200) 15.194 - −3.14; −3.24 −4.80; −4.66

HYBGM
(25, 25) 0.390 2.5 −2.16; −2.10 −2.92; −2.97
(50, 50) 1.513 2.4 −2.49; −2.58 −3.73; −3.66

(100, 100) 6.115 2.2 −2.91; −2.98 −4.29; −4.23
(200, 200) 27.175 1.8 −3.19; −3.29 −4.91; −4.80

EXOGM
(25, 25) 0.640 4.1 −1.53; −1.64 −2.80; −2.87
(50, 50) 2.527 4.0 −1.81; −1.92 −4.17; −4.52

(100, 100) 10.109 3.6 −2.44; −2, 55 −4.17; −4.15
(200, 200) 41.371 2.7 −2.40; −2.51 −4.69; −4.66

Notes: Computing time to convergence of policy functions (criterion ε = 10−6) and resulting maxi-
mum and average Euler equation errors. Computing time is reported in seconds and absolute errors
in units of base-10 logarithms.
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Figure 9: Infinite Horizon Model: Speed

Panel (a) Panel (b)
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Notes: Panel (a): Computing time to convergence of policy functions (criterion ε = 10−6) as a function
of gridpoints (with equally many gridpoints in both dimensions). Solid line: computing time of EXOGM;
dotted line: computing time of HYBGM; dashed-dotted line: computing time of ENDGM. Panel (b):
Ratio of computing time to convergence of ENDGM and HYBGM as a function of gridpoints (with
equally many gridpoints in both dimensions).
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5 Conclusion

We compare three numerical methods—the standard exogenous grid method (EXOGM),

Carroll’s method of endogenous gridpoints (ENDGM), cf. Carroll (2006), and a hybrid

method (HYBGM), cf. also Hintermaier and Koeniger (2010)—to solve dynamic models

with two continuous state variables and occasionally binding borrowing constraints. To

illustrate and to evaluate these methods we develop a life-cycle consumption-savings

model with endogenous human capital formation. Evaluation of methods is based on

speed and accuracy in both a finite and an infinite horizon setting. We show that applying

ENDGM gives rise to irregular grids. We emphasize that this leads to a trade-off: On

the one hand, closed form solutions in ENDGM greatly simplify the problem relative to

standard EXOGM. On the other hand, interpolation becomes more costly due to the

irregularity of grids. We apply Delaunay methods to interpolate on these irregular grids.

Despite this more complex interpolation, we find that ENDGM outperforms EXOGM

in both the finite as well as the infinite horizon version of the model. In the infinite

horizon model, ENDGM also always dominates HYBGM. For a standard choice of 25

to 50 gridpoints in each dimension, ENDGM is 2.4 to 2.5 times faster than HYBGM

and 4.0 to 4.1 times faster than EXOGM. As the number of gridpoints increases, in-

terpolation on irregular grids becomes increasingly costly to the effect that the relative

speed advantage of ENDGM decreases. This becomes more apparent in the finite horizon

model. Here, ENDGM dominates HYBGM for small to medium sized problems whereas

HYBGM dominates for a large number of gridpoints. For a standard choice of 25 to 50

gridpoints in each dimension, ENDGM is 1.4 to 1.7 times faster than HYBGM and 2.3

to 2.5 times faster than EXOGM.

Two additional remarks on ENDGM and HYBGM are in order. First, within the class

of problems solvable with first-order methods, neither of the two is a general method.

Both are applicable only to specific problems at hand. This requires restrictions on

the model’s specification and on functional forms. Second, as HYBGM uses analytical

solutions in only one dimension and standard numerical methods in others, its relative

advantage can be expected to decrease in the dimensionality of the problem. For example,

in a three dimensional problem, as HYBGM can only use analytical solutions in one

dimension, HYBGM requires to solve a two-dimensional problem numerically. On the

other hand, however, complexity of interpolation in ENDGM will also increase. As we

restrict attention to two dimensional problems in this paper, we cannot address how this

trade-off is ultimately resolved. We leave such extensions to higher dimensions for future

research.
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A Derivation of FOC

The dynamic version of the household problem reads as

Vt(at, ht) = max
ct,it,at+1,ht+1

{u(ct) + βs (ht+1)Vt+1(at+1, ht+1)}

subject to

at+1 = R (at + wht − ct − it)

ht+1 = (1− δ) (ht + f (it))

at+1 ≥ 0.

Assigning multiplier µ to the borrowing constraint, the two first order conditions with

respect to ct and it are:

∂Vt (at, ht)

∂ct
= uc − βs (ht+1)Vt+1aR−Rµ

!
= 0⇔ uc − βs (ht+1)RVt+1a = Rµ, (9)

∂Vt (at, ht)

∂it
= sh (ht+1) (1− δ) fiβVt+1 + s (ht+1) β (Vt+1a (−R) + Vt+1h (1− δ) fi)−Rµ

!
= 0

⇔ sh (ht+1) (1− δ) fiβVt+1 + s (ht+1) β (Vt+1a (−R) + Vt+1h (1− δ) fi) = Rµ

(10)

and at+1 ≥ 0, µ ≥ 0 and at+1µ = 0.

In order to compute optimal policies we need to distinguish two cases.

Case 1: Interior Solution

In the first case the borrowing constraint is not binding so that µ = 0. This reduces the

system of equations to

uc − βs (ht+1)RVt+1a = 0

sh (ht+1) (1− δ) fiβVt+1 + s (ht+1) β (Vt+1a (−R) + Vt+1h (1− δ) fi) = 0.

Rearranging gives

uc = βs (ht+1)Vt+1aR

fi =
R

(1− δ)
s (ht+1)Vt+1a

sh (ht+1)Vt+1 + s (ht+1)Vt+1h

.
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Case 2: Corner Solution—Binding Borrowing Constraint

In the second case the borrowing constraint is binding so that a′ = 0 and µ > 0. From (9)

and (10) it then follows that

uc = sh (ht+1) βVt+1 + s (ht+1) βVt+1h (1− δ) fi (11)

and

uc = β (1− δ) fi (sh (ht+1)Vt+1 + s (ht+1)Vt+1h)

at+1 = 0⇔ ct = at + wht − it.

Making use of our assumptions on functional forms, equation (11) reduces in EXOGM

and HYBGM to

(at + wht − it)−θ−
1(

(1− δ)
(
ht + γ

α
iαt
))2Vt+1

[
0, (1− δ)

(
ht +

γ

α
iαt

))
β (1− δ) γi−(1−α)t

−

(
1− 1

(1− δ)
(
ht + γ

α
iαt
))Vt+1h

(
0, (1− δ)

(
ht +

γ

α
iαt

))
β (1− δ) γi−(1−α)t = 0

and in ENDGM to(
at + w

(
ht+1

1− δ
− 1

γ
i1−αt

)
− it

)−θ
− 1

(ht+1)
2βVt+1 (0, ht+1) (1− δ) γi−(1−α)t

−
(

1− 1

1 + ht+1

)
βVt+1h (0, ht+1) (1− δ) γi−(1−α)t = 0.

Observe that this equation is not linear in it. We therefore need to use a numerical

routine in the region where the borrowing constraint is binding also for ENDGM, cf. our

discussion in the main text in Subsection 3.2.

In both cases—i.e., for interior solutions and for binding borrowing constraints—the

envelope conditions are

∂Vt (at, ht)

∂at
≡ Vta = βVt+1aR +Rµ = uc

∂Vt (at, ht)

∂ht
≡ Vth

= βsh (ht+1)Vt+1(at+1, ht+1) (1− δ) + βs (ht+1)Vta(at+1, ht+1)wR+

βs (ht+1)Vt+1h(at+1, ht+1) (1− δ) +Rµ

=

(
w +

1

fi

)
uc.
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